Climate Dynamics Group
at the University of California, Santa Cruz

Uncertainty in the spatial pattern of climate change is dominated by divergent predictions among climate models. Model differences are closely linked to their representation of climate feedbacks, that is, the additional radiative fluxes that are caused by changes in clouds, water vapor, surface albedo, and other factors, in response to an external climate forcing. Progress in constraining this uncertainty is therefore predicated on understanding how patterns of individual climate feedbacks aggregate into a regional and global climate response. We begin by presenting a framework for quantifying the zonal mean, equilibrium temperature response to radiative feedbacks and radiative forcing. This work illustrates the pivotal role of atmospheric heat transport in balancing the energetic requirements of the feedbacks, and kicks off a theme throughout this cluster—how do radiative feedbacks affect atmospheric dynamics? Further investigations employ a moist energy balance model (the MEBM) that combines regional feedbacks and the diffusion of both latent and sensible heat to reveal how uncertainty in feedback patterns drives uncertainty in the patterns of temperature response

view portfolio ↓
  • Dave Bonan
  • Kyle Armour (UW)
  • Gerard Roe (UW)
  • Nick Siler (OSU)
  • Nicole Feldl

We employ a moist energy balance model (MEBM), representing atmospheric heat transport as the diffusion of near‐surface moist static energy, to evaluate sources of uncertainty in the meridional pattern of surface warming. Given zonal mean patterns of radiative forcing, radiative feedbacks, and ocean heat uptake, the MEBM accurately predicts zonal mean warming as simulated by general circulation models under increased CO2. Over a wide range of latitudes, the MEBM captures approximately 90% of the variance in zonal mean warming across the general circulation models, with approximately 70% of the variance attributable to differences in radiative feedbacks alone. Partitioning the radiative feedbacks into individual components shows that the majority of the uncertainty in the meridional pattern of warming arises from uncertainty in cloud feedbacks. Isolating feedback... read more →

  • Doyeon Kim
  • Sarah Kang (UNIST, South Korea)
  • Yechul Shin
  • Nicole Feldl

The mechanism of polar amplification in the absence of surface albedo feedback is investigated using an atmospheric model coupled to an aquaplanet slab ocean forced by a CO2 doubling. In particular, we examine the sensitivity of polar surface warming response under different insolation conditions from equinox (EQN) to annual mean (ANN) to seasonally varying (SEA). Varying insolation greatly affects the climatological static stability. The equinox condition, with the largest polar static stability, exhibits a bottom-heavy vertical profile of polar warming response that leads to the strongest polar amplification. In contrast, the polar warming response in ANN and SEA exhibits a maximum in the midtroposphere, which leads to only weak polar amplification. The midtropospheric warming maximum, which results from an increased poleward atmospheric energy transport in... read more →

  • Nicole Feldl

Radiative kernels for the GFDL AM2.1 in its aquaplanet configuration with a seasonal cycle are available for download from this repo and are described in the following paper: Feldl, N., S. Bordoni, and T. M. Merlis (2017), Coupled high-latitude climate feedbacks and their impact on atmospheric heat transport, Journal of Climate, 30, 189–201, doi:10.1175/JCLI-D-16-0324.1.

read more →
  • Gerard Roe (UW)
  • Nicole Feldl
  • Kyle Armour (UW)
  • Yen-Ting Hwang (National Taiwan University)
  • Dargan Frierson (UW)

Uncertainty in the spatial pattern of climate change is dominated by divergent predictions among climate models. Model differences are closely linked to their representation of climate feedbacks, that is, the additional radiative fluxes that are caused by changes in clouds, water vapour, surface albedo, and other factors, in response to an external climate forcing. Progress in constraining this uncertainty is therefore predicated on understanding how patterns of individual climate feedbacks aggregate into a regional and global climate response. Here we present a simple, moist energy balance model that combines regional feedbacks and the diffusion of both latent and sensible heat. Our model emulates the relationship between regional feedbacks and temperature response in more comprehensive climate models; the model can therefore be used to understand how... read more →

  • Brian Rose (UAlbany)
  • Kyle Armour (UW)
  • David Battisti (UW)
  • Nicole Feldl
  • Daniel Koll

The effect of ocean heat uptake (OHU) on transient global warming is studied in a multimodel framework. Simple heat sinks are prescribed in shallow aquaplanet ocean mixed layers underlying atmospheric general circulation models independently and combined with CO2 forcing. Sinks are localized to either tropical or high latitudes, representing distinct modes of OHU found in coupled simulations. Tropical OHU produces modest cooling at all latitudes, offsetting only a fraction of CO2 warming. High‐latitude OHU produces three times more global mean cooling in a strongly polar‐amplified pattern. Global sensitivities in each scenario are set primarily by large differences in local shortwave cloud feedbacks, robust across models. Differences in atmospheric energy transport set the pattern of temperature change. Results imply that global and regional warming rates depend... read more →

  • Nicole Feldl
  • Gerard Roe (UW)

The climate feedback framework partitions the radiative response to climate forcing into contributions from individual atmospheric processes. The goal of this study is to understand the closure of the energy budget in as much detail and precision as possible, within as clean an experimental setup as possible. Radiative kernels and radiative forcing are diagnosed for an aquaplanet simulation under perpetual equinox conditions. The role of the meridional structure of feedbacks, heat transport, and nonlinearities in controlling the local climate response is characterized. Results display a combination of positive subtropical feedbacks and polar amplified warming. These two factors imply a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: anomalous... read more →

  • Nicole Feldl
  • Gerard Roe (UW)

The spatial pattern of climate feedbacks depends on how the feedbacks are defined. We employ an idealized aquaplanet simulation with radiative kernels diagnosed for the precise model setup and characterize the meridional structure of feedbacks under four different definitions: local feedbacks, global feedbacks, nondimensional feedback factors, and relative humidity feedbacks. First, the spatial pattern of the reference response (i.e., the Planck feedback) is found to vary with definition, largely as a consequence of polar‐amplified warming, which affects other high‐latitude feedbacks as well. Second, locally defined feedbacks allow for decomposition of the surface temperature response as a function of feedbacks, forcing, and heat transport. Third, different insights into the dynamical and thermodynamical underpinnings of the subtropical moisture response are gained by comparing different versions of humidity... read more →