Climate Dynamics Group
at the University of California, Santa Cruz

The remote impacts of climate feedbacks on regional climate predictability

research paper
  • Gerard Roe
  • Nicole Feldl
  • Kyle Armour
  • Yen-Ting Hwang
  • Dargan Frierson
updates ↓

01/26/15 Roe, G. H., N. Feldl, K. C. Armour, Y.-T. Hwang, and D. M. W. Frierson (2015), Nature Geoscience, 8, 135-139, doi:10.1038/ngeo2346.

Uncertainty in the spatial pattern of climate change is dominated by divergent predictions among climate models. Model differences are closely linked to their representation of climate feedbacks, that is, the additional radiative fluxes that are caused by changes in clouds, water vapour, surface albedo, and other factors, in response to an external climate forcing. Progress in constraining this uncertainty is therefore predicated on understanding how patterns of individual climate feedbacks aggregate into a regional and global climate response. Here we present a simple, moist energy balance model that combines regional feedbacks and the diffusion of both latent and sensible heat. Our model emulates the relationship between regional feedbacks and temperature response in more comprehensive climate models; the model can therefore be used to understand how uncertainty in feedback patterns drives uncertainty in the patterns of temperature response. We find that whereas uncertainty in tropical feedbacks induces a global response, the impact of uncertainty in polar feedbacks remains predominantly regionally confined.