Climate Dynamics Group
at the University of California, Santa Cruz

For a comprehensive list of publications, see Google Scholar.
For code, see Github.

Changes in poleward atmospheric energy transport over a wide range of climates: Energetic and diffusive perspectives and a priori theories
Merlis, T. M., N. Feldl, and R. Caballero (2022), Journal of Climate, 35(20), 2933–2948, doi:10.1175/JCLI-D-21-0682.1.
Robust anthropogenic signal identified in the seasonal cycle of tropospheric temperature
Santer, B. D., S. Po-Chedley, N. Feldl, J. C. Fyfe, Q. Fu, S. Solomon, M. England, K. B. Rodgers, M. F. Stuecker, C. Mears, C.-Z. Zou, C. J. W. Bonfils, G. Pallotta, M. D. Zelinka, N. Rosenbloom, J. Edwards (2022), Robust anthropogenic signal identified in the seasonal cycle of tropospheric temperature, Journal of Climate, 35(18), 6075–6100, doi:10.1175/JCLI-D-21-0766.1.
Climate sensitivity is sensitive to changes in ocean heat transport
Singh, H., N. Feldl, J. E. Kay, and A. L. Morrison (2022), Journal of Climate, 35(9), 2653–2674, doi:10.1175/JCLI-D-21-0674.1.
Causes of the Arctic's lower-tropospheric warming structure
Kaufman, Z. S., and N. Feldl (2022), Journal of Climate, 35(6), 1983–2002, doi:10.1175/JCLI-D-21-0298.1.
Process drivers, inter-model spread, and the path forward: A review of amplified Arctic warming
Taylor, P. C., R. C. Boeke, L. N. Boisvert, N. Feldl, M. Henry, Y. Huang, P. L. Langen, W. Liu, F. Pithan, S. A. Sejas, and I. Tan (2022), Frontiers in Earth Science, 9:758361, doi:10.3389/feart.2021.758361.
Polar amplification in idealized climates: the role of ice, moisture, and seasons
Feldl, N., and T. M. Merlis (2021), Geophysical Research Letters, 48, e2021GL094130, doi:10.1029/2021GL094130.
Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback
Feldl, N., S. Po-Chedley, H. K. A Singh, S. Hay, and P. J. Kushner (2020), npj Climate and Atmospheric Science, 3, 41, doi:10.1038/s41612-020-00146-7.
Causal interactions between Southern Ocean polynyas and high-latitude atmosphere-ocean variability
Kaufman, Z. S., N. Feldl, W. Weijer, and M. Veneziani (2020), Journal of Climate, 33, 4891-4905, doi:10.1175/JCLI-D-19-0525.1.
Revisiting the surface-energy-flux perspective on the sensitivity of global precipitation to climate change
Siler, N., G. H. Roe, K. C. Armour, N. Feldl (2019), Climate Dynamics, 52, doi:10.1007/s00382-018-4359-0.
Sources of uncertainty in the meridional pattern of climate change
Bonan, D. B., K. C. Armour, G. H. Roe, N. Siler, and N. Feldl (2018), Geophysical Research Letters, 45, doi:10.1029/2018GL079429.
Sensitivity of polar amplification to varying insolation conditions
Kim, D., S. M. Kang, Y. Shin, and N. Feldl (2018), Journal of Climate, 31, 4933–4947, doi:10.1175/JCLI-D-17-0627.1.
Atmospheric eddies mediate lapse rate feedback and Arctic amplification
Feldl, N., B. T. Anderson, and S. Bordoni (2017), Journal of Climate, 30, 9213–9224, doi:10.1175/JCLI-D-16-0706.1.
Coupled high-latitude climate feedbacks and their impact on atmospheric heat transport
Feldl, N., S. Bordoni, and T. M. Merlis (2017), Journal of Climate, 30, 189–201, doi:10.1175/JCLI-D-16-0324.1.
Characterizing the Hadley circulation response through regional climate feedbacks
Feldl, N., and S. Bordoni (2016), Journal of Climate, 29, 613-622, doi:10.1175/JCLI-D-15-0424.1.
The remote impacts of climate feedbacks on regional climate predictability
Roe, G. H., N. Feldl, K. C. Armour, Y.-T. Hwang, and D. M. W. Frierson (2015), Nature Geoscience, 8, 135-139, doi:10.1038/ngeo2346.
The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake
Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll (2014), Geophysical Research Letters, 41, doi:10.1002/2013GL058955.
The nonlinear and nonlocal nature of climate feedbacks
Feldl, N., and G. H. Roe (2013), Journal of Climate, 26, 8289–8304, doi:10.1175/JCLI-D-12-00631.1.
Four perspectives on climate feedbacks
Feldl, N., and G. H. Roe (2013), Geophysical Research Letters, 40, doi:10.1002/grl.50711.