For a comprehensive list of publications, see
Google Scholar.
For code, see
Github.
Mid-latitude clouds contribute to Arctic amplification via interactions with other climate feedbacks
Bonan, D. B., J. E. Kay, N. Feldl, and M. D. Zelinka (2025), Environmental Research: Climate, x, y, doi:10.1088/2752-5295/ada84b.
Sea ice perturbations in aquaplanet simulations: Isolating the physical climate responses from model interventions
England, M. R., N. Feldl, and I. Eisenman (2024), Environmental Research: Climate, 3, 045031, doi:10.1088/2752-5295/ad9b45.
Impacts of Atlantic meridional overturning circulation weakening on Arctic amplification
Lee, Y.-C., W. Liu, A. Federov, N. Feldl, P. C. Taylor (2024), Proceedings of the National Academy of Sciences, 121(39), doi:10.1073/pnas.2402322121.
Sea ice loss, water vapor increases, and their interactions with atmospheric energy transport in driving seasonal polar amplification
Chung, P.-C., and N. Feldl (2024), Journal of Climate, 37, 2713–2725, doi:10.1175/JCLI-D-23-0219.1.
The influence of climate feedbacks on regional hydrological changes under global warming
Bonan, D. B., N. Feldl, N. Siler, J. E. Kay, K. C. Armour, I. Eisenman, and G. H. Roe (2024), Geophysical Research Letters, 51, e2023GL106648, doi:10.1029/2023GL106648.
Robust polar amplification in ice-free climates relies on ocean heat transport and cloud radiative effects
England, M. R., and N. Feldl (2024), Journal of Climate, 37, 2179–2197, doi:10.1175/JCLI-D-23-0151.1.
Warm Arctic-Cold Eurasia pattern driven by atmospheric blocking in models and observations
Kaufman, Z. S., N. Feldl, and C. Beaulieu (2024), Environmental Research: Climate, 3(1), 015006, doi:10.1088/2752-5295/ad1f40.
A semi-analytical model for water vapor, temperature, and surface-albedo feedbacks in comprehensive climate models
Feldl, N., and T. M. Merlis (2023), Geophysical Research Letters, 50, e2023GL105796, doi:10.1029/2023GL105796.
Current-climate sea ice amount and seasonality as constraints for future Arctic amplification
Linke, O., N. Feldl, and J. Quaas (2023), Environmental Research: Climate, 2(4), 045003, doi:10.1088/2752-5295/acf4b7.
Contributions to regional precipitation change and its polar-amplified pattern under warming
Bonan, D. B., N. Feldl, M. D. Zelinka, L. C. Hahn (2023), Environmental Research: Climate, 2(3), 035010, doi:10.1088/2752-5295/ace27a.
Changes in poleward atmospheric energy transport over a wide range of climates: Energetic and diffusive perspectives and a priori theories
Merlis, T. M., N. Feldl, and R. Caballero (2022), Journal of Climate, 35(20), 2933–2948, doi:10.1175/JCLI-D-21-0682.1.
Robust anthropogenic signal identified in the seasonal cycle of tropospheric temperature
Santer, B. D., S. Po-Chedley, N. Feldl, J. C. Fyfe, Q. Fu, S. Solomon, M. England, K. B. Rodgers, M. F. Stuecker, C. Mears, C.-Z. Zou, C. J. W. Bonfils, G. Pallotta, M. D. Zelinka, N. Rosenbloom, J. Edwards (2022), Journal of Climate, 35(18), 6075–6100, doi:10.1175/JCLI-D-21-0766.1.
Climate sensitivity is sensitive to changes in ocean heat transport
Singh, H., N. Feldl, J. E. Kay, and A. L. Morrison (2022), Journal of Climate, 35(9), 2653–2674, doi:10.1175/JCLI-D-21-0674.1.
Causes of the Arctic's lower-tropospheric warming structure
Kaufman, Z. S., and N. Feldl (2022), Journal of Climate, 35(6), 1983–2002, doi:10.1175/JCLI-D-21-0298.1.
Process drivers, inter-model spread, and the path forward: A review of amplified Arctic warming
Taylor, P. C., R. C. Boeke, L. N. Boisvert, N. Feldl, M. Henry, Y. Huang, P. L. Langen, W. Liu, F. Pithan, S. A. Sejas, and I. Tan (2022), Frontiers in Earth Science, 9:758361, doi:10.3389/feart.2021.758361.
Polar amplification in idealized climates: the role of ice, moisture, and seasons
Feldl, N., and T. M. Merlis (2021), Geophysical Research Letters, 48, e2021GL094130, doi:10.1029/2021GL094130.
Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback
Feldl, N., S. Po-Chedley, H. K. A Singh, S. Hay, and P. J. Kushner (2020), npj Climate and Atmospheric Science, 3, 41, doi:10.1038/s41612-020-00146-7.
Causal interactions between Southern Ocean polynyas and high-latitude atmosphere-ocean variability
Kaufman, Z. S., N. Feldl, W. Weijer, and M. Veneziani (2020), Journal of Climate, 33, 4891-4905, doi:10.1175/JCLI-D-19-0525.1.
Revisiting the surface-energy-flux perspective on the sensitivity of global precipitation to climate change
Siler, N., G. H. Roe, K. C. Armour, N. Feldl (2019), Climate Dynamics, 52, doi:10.1007/s00382-018-4359-0.
Sources of uncertainty in the meridional pattern of climate change
Bonan, D. B., K. C. Armour, G. H. Roe, N. Siler, and N. Feldl (2018), Geophysical Research Letters, 45, doi:10.1029/2018GL079429.
Sensitivity of polar amplification to varying insolation conditions
Kim, D., S. M. Kang, Y. Shin, and N. Feldl (2018), Journal of Climate, 31, 4933–4947, doi:10.1175/JCLI-D-17-0627.1.
Emergent behavior of Arctic precipitation in response to enhanced Arctic warming
Anderson, B. T., N. Feldl, and B. R. Lintner (2018), Journal of Geophysical Research: Atmospheres, 123, doi:10.1002/2017JD026799.
Atmospheric eddies mediate lapse rate feedback and Arctic amplification
Feldl, N., B. T. Anderson, and S. Bordoni (2017), Journal of Climate, 30, 9213–9224, doi:10.1175/JCLI-D-16-0706.1.
Coupled high-latitude climate feedbacks and their impact on atmospheric heat transport
Feldl, N., S. Bordoni, and T. M. Merlis (2017), Journal of Climate, 30, 189–201, doi:10.1175/JCLI-D-16-0324.1.
Differences in water vapor radiative transfer among 1D models can significantly affect the inner edge of the habitable zone
Yang, J., J. Leconte, E. T. Wolf, C. Goldblatt, N. Feldl, T. Merlis, Y. Wang, D. D. B. Koll, F. Ding, F. Forget, and D. S. Abbot (2016), The Astrophysical Journal, 826, doi:10.3847/0004-637X/826/2/222.
Characterizing the Hadley circulation response through regional climate feedbacks
Feldl, N., and S. Bordoni (2016), Journal of Climate, 29, 613-622, doi:10.1175/JCLI-D-15-0424.1.
The remote impacts of climate feedbacks on regional climate predictability
Roe, G. H., N. Feldl, K. C. Armour, Y.-T. Hwang, and D. M. W. Frierson (2015), Nature Geoscience, 8, 135-139, doi:10.1038/ngeo2346.
The influence of regional feedbacks on circulation sensitivity
Feldl, N., D. M. W. Frierson, and G. H. Roe (2014), Geophysical Research Letters, 41, 2212–2220, doi:10.1002/2014GL059336.
The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake
Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll (2014), Geophysical Research Letters, 41, doi:10.1002/2013GL058955.
The nonlinear and nonlocal nature of climate feedbacks
Feldl, N., and G. H. Roe (2013), Journal of Climate, 26, 8289–8304, doi:10.1175/JCLI-D-12-00631.1.
Four perspectives on climate feedbacks
Feldl, N., and G. H. Roe (2013), Geophysical Research Letters, 40, doi:10.1002/grl.50711.