Climate Dynamics Group
at the University of California, Santa Cruz

Since the 1970s, simulations of climate change forced by increased CO2 concentrations have predicted warming that is greatest in polar regions. This polar-amplified warming has been variously attributed to the ice-albedo feedback, associated with the retreat of reflective sea ice in summer; the lapse rate feedback, associated with vertically nonuniform atmospheric warming in winter; and changes in energy transport by atmospheric circulations. Uncertainty in projections of Arctic climate change arise in part from incomplete understanding of the interconnected nature of these processes, which we strive to disentangle through creative modeling experiments and novel statistical techniques. This research is supported by the National Science Foundation under Award 1753034.

  • Yu-Chi Lee
  • Wei Liu
  • Alexey Federov
  • Nicole Feldl
  • Patrick Taylor

Enhanced warming of the Arctic region relative to the rest of the globe, known as Arctic amplification, is caused by a variety of diverse factors, many of which are influenced by the Atlantic meridional overturning circulation (AMOC). Here, we quantify the role of AMOC changes in Arctic amplification throughout the twenty-first century by comparing two suites of climate model simulations under the same climate change scenario but with two different AMOC states: one with a weakened AMOC and another with a steady AMOC. We find that a weakened AMOC can reduce annual mean Arctic warming by 2 °C by the end of the century. A primary contributor to this reduction in warming is surface albedo feedback, related to a smaller sea ice loss due to... read more →

  • Mark England
  • Nicole Feldl
  • Ian Eisenman

Abstract to come.

read more →
  • Dave Bonan
  • Nicole Feldl
  • Mark Zelinka
  • Lily Hahn

The polar regions are predicted to experience the largest relative change in precipitation in response to increased greenhouse-gas concentrations, where a substantial absolute increase in precipitation coincides with small precipitation rates in the present-day climate. The reasons for this amplification, however, are still debated. Here, we use an atmospheric energy budget to decompose regional precipitation change from climate models under greenhouse-gas forcing into contributions from atmospheric radiative feedbacks, dry-static energy flux divergence changes, and surface sensible heat flux changes. The polar-amplified relative precipitation change is shown to be a consequence of the Planck feedback, which, when combined with larger polar warming, favors substantial atmospheric radiative cooling that balances increases in latent heat release from precipitation. Changes in the dry-static energy flux divergence contribute modestly to... read more →

  • Olivia Linke
  • Nicole Feldl
  • Johannes Quaas

The recent Arctic sea ice loss is a key driver of the amplified surface warming in the northern high latitudes, and simultaneously a major source of uncertainty in model projections of Arctic climate change. Previous work has shown that the spread in model predictions of future Arctic amplification (AA) can be traced back to the inter-model spread in simulated long-term sea ice loss. We demonstrate that the strength of future AA is further linked to the current climate’s, observable sea ice state across the multi-model ensemble of the 6th Coupled Model Intercomparison Project (CMIP6). The implication is that the sea-ice climatology sets the stage for long-term changes through the 21st century, which mediate the degree by which Arctic warming is amplified with respect to global... read more →

  • Zachary Kaufman
  • Nicole Feldl
  • Claudie Beaulieu

In recent decades, Arctic-amplified warming and sea-ice loss coincided with a prolonged wintertime Eurasian cooling trend. This observed Warm Arctic-Cold Eurasia pattern has occasionally been attributed to sea-ice forced changes in the midlatitude atmospheric circulation, implying an anthropogenic cause. However, comprehensive climate change simulations do not produce Eurasian cooling, instead suggesting a role for unforced atmospheric variability. This study seeks to clarify the source of this model-observation discrepancy by developing a statistical approach that enables direct comparison of Arctic-midlatitude interactions. In both historical simulations and observations, we first identify Ural blocking as the primary causal driver of sea ice, temperature, and circulation anomalies consistent with the Warm Arctic-Cold Eurasia pattern. Next, we quantify distinct transient responses to this Ural blocking, which explain the model-observation discrepancy... read more →

  • Po-Chun Chung
  • Nicole Feldl

The ice-albedo feedback associated with sea ice loss contributes to polar amplification, while the water vapor feedback contributes to tropical amplification of surface warming. However, these feedbacks are not independent of atmospheric energy transport, raising the possibility of complex interactions that may obscure the drivers of polar amplification, in particular its manifestation across the seasonal cycle. Here, we apply a radiative transfer hierarchy to the idealized Isca climate model coupled to a thermodynamic sea ice model. The climate responses and radiative feedbacks are decomposed into the contributions from sea ice loss, including both retreat and thinning, and the radiative effect of water vapor changes. We find that summer sea ice retreat causes winter polar amplification through ocean heat uptake and release, and the resulting decrease... read more →

  • Mark England
  • Nicole Feldl

A fundamental divide exists between previous studies which conclude that polar amplification does not occur without sea ice and studies which find that polar amplification is an inherent feature of the atmosphere independent of sea ice. We hypothesise that a representation of climatological ocean heat transport is key for simulating polar amplification in ice-free climates. To investigate this we run a suite of targeted experiments in the slab ocean aquaplanet configuration of CESM2-CAM6 with different profiles of prescribed ocean heat transport, which are invariant under CO2 quadrupling. In simulations without climatological ocean heat transport, polar amplification does not occur. In contrast, in simulations with climatological ocean heat transport, robust polar amplification occurs in all seasons. What is causing this dependence of polar amplification on ocean... read more →

  • Nicole Feldl
  • Timothy Merlis

Radiative feedbacks govern the Earth’s climate sensitivity and elucidate the geographic patterns of climate change in response to a carbon-dioxide forcing. We develop an analytical model for patterned radiative feedbacks that depends only on changes in local surface temperature. The analytical model combines well-known moist adiabatic theory with the radiative-advective equilibrium that describes the energy balance in high latitudes. Together with a classic analytical function for surface albedo, all of the non-cloud feedbacks are represented. The kernel-based analytical feedbacks reproduce the feedbacks diagnosed from global climate models at the global, zonal-mean, and seasonal scales, including in the polar regions, though with less intermodel spread. The analytical model thus provides a framework for a quantitative understanding of radiative feedbacks from simple physics, independent of the detailed... read more →

  • Nicole Feldl
  • Timothy Merlis

Polar amplification of climate change is simulated across models with various representations of local feedbacks and poleward energy transports. Yet uncertainty in attribution remains due to the interactive nature of the physical drivers and the different perspectives afforded by different diagnostic methods. Here, the role of sea-ice processes, moist energy transport, and the seasonal cycle of insolation are systematically isolated in two models, an energy balance model and an idealized general circulation model. Filling this gap in the modeling hierarchy reveals that, compared to a simple ice-albedo feedback (temperature-dependent surface albedo), the addition of thermodynamic-ice processes and the seasonal cycle of insolation profoundly affects seasonal polar warming. Climatologically limited-extent ice in the warm season permits only small increases in absorbed solar radiation, producing weak warming,... read more →

  • Patrick Taylor
  • Robyn Boeke
  • Linette N. Boisvert
  • Nicole Feldl
  • Matthew Henry
  • Yiyi Huang
  • Peter Langen
  • Wei Liu
  • Felix Pithan
  • Sergio Sejas
  • Ivy Tan

Arctic amplification (AA) is a coupled atmosphere-sea ice-ocean process. This understanding has evolved from the early concept of AA, as a consequence of snow-ice line progressions, through more than a century of research that has clarified the relevant processes and driving mechanisms of AA. The predictions made by early modeling studies, namely the fall/winter maximum, bottom-heavy structure, the prominence of surface albedo feedback, and the importance of stable stratification have withstood the scrutiny of multi-decadal observations and more complex models. Yet, the uncertainty in Arctic climate projections is larger than in any other region of the planet, making the assessment of high-impact, near-term regional changes difficult or impossible. Reducing this large spread in Arctic climate projections requires a quantitative process understanding. This manuscript aims to... read more →

  • Zachary Kaufman
  • Nicole Feldl

Arctic amplification has been attributed predominantly to a positive lapse rate feedback in winter, when boundary layer temperature inversions focus warming near the surface. Predicting high-latitude climate change effectively thus requires identifying the local and remote physical processes that set the Arctic’s vertical warming structure. In this study, we analyze output from the CESM Large Ensemble’s twenty-first-century climate change projection to diagnose the relative influence of two Arctic heating sources, local sea ice loss and remote changes in atmospheric heat transport. Causal effects are quantified with a statistical inference method, allowing us to assess the energetic pathways mediating the Arctic temperature response and the role of internal variability across the ensemble. We find that a step-increase in latent heat flux convergence causes Arctic lower-tropospheric warming... read more →

  • Nicole Feldl
  • Stephen Po-Chedley
  • Hansi Singh
  • Stephanie Hay
  • Paul Kushner

Arctic amplification of anthropogenic climate change is widely attributed to the sea-ice albedo feedback, with its attendant increase in absorbed solar radiation, and to the effect of the vertical structure of atmospheric warming on Earth’s outgoing longwave radiation. The latter lapse rate feedback is subject, at high latitudes, to a myriad of local and remote influences whose relative contributions remain unquantified. The distinct controls on the high-latitude lapse rate feedback are here partitioned into upper and lower contributions originating above and below a characteristic climatological isentropic surface that separates the high-latitude lower troposphere from the rest of the atmosphere. This decomposition clarifies how the positive high-latitude lapse rate feedback over polar oceans arises primarily as an atmospheric response to local sea ice loss and is... read more →